Fingerprint Gender Classification using Univariate Decision Tree (J48)
نویسنده
چکیده
Data mining is the process of analyzing data from a different category. This data provide information and data mining will extracts a new knowledge from it and a new useful information is created. Decision tree learning is a method commonly used in data mining. The decision tree is a model of decision that looklike as a tree-like graph with nodes, branches and leaves. Each internal node denotes a test on an attribute and each branch represents the outcome of the test. The leaf node which is the last node will holds a class label. Decision tree classifies the instance and helps in making a prediction of the data used. This study focused on a J48 algorithm for classifying a gender by using fingerprint features. There are four types of features in the fingerprint that is used in this study, which is Ridge Count (RC), Ridge Density (RD), Ridge Thickness to Valley Thickness Ratio (RTVTR) and White Lines Count (WLC). Different cases have been determined to be executed with the J48 algorithm and a comparison of the knowledge gain from each test is shown. All the result of this experiment is running using Weka and the result achieve 96.28% for the classification rate. Keywords—fingerprint; gender classification; global features; Univariate Decision Tree; J48
منابع مشابه
Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملA Comparative Study of Classification Algorithms for Spam Email Data Analysis
In recent years email has become one of the fastest and most economical means of communication. However increase of email users has resulted in the dramatic increase of spam emails during the past few years. Data mining -classification algorithms are used to categorize the email as spam or non-spam. In this paper, we conducted experiment in the WEKA environment by using four algorithms namely I...
متن کاملPerformance Comparison of Naïve Bayes and J48 Classification Algorithms
Classification is an important data mining technique with broad applications. It classifies data of various kinds. Classification is used in every field of our life. Classification is used to classify each item in a set of data into one of predefined set of classes or groups. This paper has been carried out to make a performance evaluation of Naïve Bayes and j48 classification algorithm. Naive ...
متن کاملComparison of Different Classification Techniques Using Different Datasets
In this paper different classification techniques of Data Mining are compared using diverse datasets from University of California, Irvine(UCI). Accuracy and time required for execution by each technique is observed. The Data Mining refers to extracting or mining knowledge from huge volume of data. Classification is an important data mining technique with broad applications. It classifies data ...
متن کاملEmail Classification Using Machine Learning Algorithms
Email has become one of the frequently used forms of communication. Everyone has at least one email account. Inflow of spam messages is a major problem faced by email users. Currently there are many spam filtering techniques. As the spam filtering techniques came up, spammers improved their methods of spamming. Thus, an effective spam filtering technique is the timely requirement. In this paper...
متن کامل